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A Deep-Learning-Based Observer for State Estimation of Direct
Contact Membrane Distillation System Modeled by Differential

Algebraic Equations

Yubin Wang1, Yasmine Marani1 and Taous Meriem Laleg Kirati1,2

Abstract— Due to its high rejection rate and low energy
consumption, Direct Contact Membrane Distillation (DCMD)
technology is drawing more attention for seawater desalination,
to meet the urgent and growing demands for freshwater. State
estimation in DCMD system, which is modeled by nonlinear
Differential Algebraic Equations (DAE) is crucial for controller
design and system’s monitoring. In this paper, a novel learning-
based observer is proposed for state estimation of the DCMD
system. The method consists of an encoder and decoder struc-
ture. The encoder allows to transform the DAE system into
a linear ODE modulo an output injection in the latent space
and the decoder helps in recovering the state estimate from
the latent state. First, a brief description of the DCMD system
and its DAE model are recalled. Then, the method is presented
and illustrated. Explanations on how the learning structures
are constructed and trained are provided. Finally, numerical
simulations are conducted to illustrate the effectiveness of the
proposed learning-based observer design.

I. INTRODUCTION
With the background of freshwater sources are getting

exhausted and seawater desalination is a promising solution
to freshwater scarcity issue, Membrane distillation (MD) is
placed as a high potential desalination technique due to its
impressive solutes’ rejection factor approximating 100% [1]
and emerging sustainable potential, combining both ther-
mal and membrane-based separation techniques. Better than
other desalination processes, MD is operated with a lower
hydrostatic pressure and lower temperatures [1], making
this energy-friendly technique a promising and sustainable
method for water desalination.

However, MD suffers from some limitations, in particular,
low production rate. Several advanced control techniques
are designed to overcome issues for MD, especially for
DCMD configuration. For instance, a Lyapunov-based con-
trol was proposed for DCMD modeled by Partial Differential
Equations (PDE) in [3], an Extremum Seeking Control was
developed in [4], Model Predictive Control (MPC) paradigms
were designed and analyzed in [5] and [6]. However, most
of the proposed advanced strategies are based on the as-
sumption that the states of DCMD are known, accessible and
fully measurable. Unfortunately, it is actually challenging to
measure most of the DCMD states, temperatures and heat

1Computer, Electrical and Mathematical Science and Engineering
Division (CEMSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia 2Taous Meriem Laleg-Kirati
is also affiliated to the National Institute for Research in Digital Science and
Technology, Paris-Saclay, France. yubin.wang@kaust.edu.sa,
yasmine.marani@kaust.edu.sa,
taousmeriem.laleg@kaust.edu.sa

Fig. 1. DCMD module configuration [2]

transfer rates especially, due to the nature of the DCMD
system. Hence, several methods for observing the DCMD
state have been proposed for instance in [3], [4] and [7]
in which the PDE model has been used in the design of
the state observers. To reduce the computational complex-
ity, observer structures based on the nonlinear Differential
Algebraic Equations (DAE) have been proposed in [8] and
an advanced computationally efficient version using Linear
Matrix Inequality (LMI) was designed in [9]. However,
the convergence of such observers depends on restrictive
assumptions on the non-linearities.

Different from the above observers, observers dealing
with less restrictive assumptions on the non-linearities have
been proposed where the main idea consists in identifying a
corresponding transformation, which simplifies the nonlinear
dynamics to linear or canonical forms [10], [11]. Moreover, a
Kazantzis-Kravaris-Luenberger (KKL) observer has been de-
veloped with the idea of using a transformation of nonlinear
systems into approximately linear or canonical forms modulo
an output injection in [12] and is extended to the discrete-
time form in [13]. However, despite the fact that the existence
of such a transformation has been already established, the
analytical and numerical solution is usually not easy to
compute. Therefore, with the help of deep neural networks
structure, a computationally efficient algorithm has been
proposed to compute the transformation through supervised
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learning in [14], and unsupervised-learning in [15]. Although
the learning-based KKL observer offers a good alternative,
[14] [15], the performance for real applications still remains
uncertain since the existence of the unique transformation
used in KKL observer would be lost due to the non-linearity
and control input.

Inspired by [15], this paper introduces a generalized deep-
learning-based observer design to estimate the states of
the DCMD system modeled by a set of nonlinear DAEs.
An auto-encoder-decoder model is built and trained with
unsupervised-learning to identify a pair of suitable transfor-
mations, which can map the process states into latent space
where the new dynamics are linear, guaranteeing the overall
convergence of the proposed learning-based observer. Data
has been generated using the DAE model in [8]. Numerical
simulations are conducted to demonstrate the effectiveness of
the proposed data-driven estimation method for the DCMD
process. The contributions and novelties are mainly focused
on: (i) a novel purely deep-learning-based observer is de-
signed and a corresponding deep-learning implementation
is proposed, (ii) to the best of the author knowledge, it’s
the first time to utilize deep-learning techniques to estimate
states of the DCMD system modeled by DAEs, (iii) the
presented methodology is generalized and suitable for non-
autonomous and high-dimensional systems with constant
control input, removing complex limitations on control input
and assumptions in the system dynamics.

The rest of paper will be presented as follows: Section II
serves as a brief description of the operation principles and
the model of DCMD. In section III, a learning-based observer
is designed and an auto-encoder-decoder is developed to
estimate the process states of DCMD. To illustrate the
effectiveness of the proposed implementation, numerical sim-
ulations are conducted to evaluate the observer’s performance
in Section. IV. Finally, conclusions are presented in Section.
V.

II. DIRECT CONTACT MEMBRANE DISTILLATION
(DCMD) SYSTEM

A. DCMD Configuration Description

The DCMD configuration is illustrated in Figure 1. A
hot feed solution (seawater) and cold permeate solution are
maintained in direct contact with a hydrophobic membrane
which ensures that only pure water vapor passes to the cold
permeate solution.

The hot feed water enters the DCMD module at a tem-
perature Tfin with an inlet mass flow rate Mfin . In the
permeate side, cold freshwater enters at temperature Tpin .
The water temperature decreases from bulk feed stream Tbf

to membrane-feed interface Tmf . On the other hand, the
permeate water temperature increases from the bulk permeate
stream Tbp to the membrane-permeate interface Tmp. This
difference of temperature along the membrane induces a
gradient of pressure yielding to the water vapor molecules
to travel through the membrane pores and condense at the
permeate side of the DCMD module. The flux generated is

expressed as follows [16]:

J = Bm(Pmf − Pmp) (1)

where Bm is the membrane mass transfer parameter, Pmf

and Pmp represent the saturated vapor pressure on the
membrane interface from the feed and permeate side, re-
spectively. They can be calculated by Antoine equation with
the respective temperature at the membrane interface [16]:

P [T ] = e(23.1964−
3816.44

T+227.02 ) (2)

Overall, the DCMD process is driven by two transport
mechanisms: Heat transfer and Mass transfer. In fact, the
trans-membrane temperature difference generates a simul-
taneous mass transfer and heat transfer: the evaporation of
water at the membrane feed interface, the transport of water
vapor molecules through the pores of the membrane, and
water vapor condensation at the cold interface.

The combination of these two transfer mechanisms is used
to develop the model in [8] based on thermal-electrical anal-
ogy and a lumped capacitance method. By subdividing the
DCMD into N coupled cells, the authors were able to assume
that the temperature distribution in the feed and permeate
bulk streams were uniform to obtain a mono-dimensional
distribution. Afterwards, they derived an equivalent electrical
network of the DCMD system, and obtained the following
Differential Algebraic Equations (DAE):

dQfn

dt
=

1

Ln
f

Tbfn−1
−

Rn
fz

Ln
f

Qfn −
1

Ln
f

Tbfn

dTbfn

dt
=

1

Cbf
Qfn −

1

Cbf

(
1

Rf
+ JnAmcp

)
Tbfn

− 1

Cbf
Qfn+1

+
1

CbfRf
Tmfn

dQpn

dt
=

1

Ln
p

Tbpn−1 −
Rn

pz

Ln
p

Qpn −
1

Ln
p

Tbpn

dTbpn

dt
=

1

Cbp
Qpn −

1

CbpRp
Tbpn

− 1

Cbp
Qpn+1

+
1

Cbp

(
1

Rp
+ JnAmcp

)
Tmpn

0 =

(
1

Rf
+ JnAmcp

)
Tbfn −

1

Rf
Tmfn

−
(

1

Rp
+ JnAmcp

)
Tmpn

+
1

Rp
Tbpn

0 =

(
1

Rm
+

1

Rp
+ JnAmcp

)
Tmpn

− 1

Rp
Tbpn

− JnAmHv[Tmfn ]−
1

Rm
Tmfn

0 = Tfout − Tpin −RftermQfN+1

0 = Tpout − Tfin +RptermQp1

(3)

The states equations are in the form of a nonlinear
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descriptor system:

Eẋ = Fc(x) +Buu,

y =

 Tfout

Tpout

G(x)

 .
(4)

where the state vector x ∈ R(6N+4) is given by:
x =[Qf1 , Tbf1 , . . . , TbfN , QfN+1

, Qp1
, Tbp1

, . . . , TbpN
, QpN+1

,

Tfout , Tpout , Tmf1 , . . . , TmfN , Tmp1 , . . . , TmpN
]T ,

TABLE I
NOMENCLATURE

Symbol Description Unit
Am Differential cell membrane area m2

Bm Membrane transport coefficient Kg/m2sPa
C Thermal capacitance J/◦C
cp Specific heat of water J/Kg◦C
G Production rate kg/h
Hv latent heat of vaporization J/Kg
J Mass flux Kg/m2 s
L Thermal coupling inductor
N Total number of cells in the DCMD
Q Heat transfer rate W
R Thermal resistance °C or K
T Temperature °C or K
Subscripts
b Bulk
f Feed
in Inlet
m membrane interface
n cell index
out Outlet
p Permeate
term Terminal cell
z coupling

E is a singular matrix whose rank is smaller than 6N +
4, F (x) is a non-linear function of the states. The input
of the system u = [Tfin , Tpin ]

T has two components as
illustrated in Figure. 1: the feed inlet temperature Tfin

and permeate inlet temperature Tpin
. The output of the

process y consists of the feed outlet temperature Tfout
, the

permeate outlet temperature Tpout
, and the production rate

G =
∑N

n=1 Jn(x)Am. For more details about the system
equations and the matrices form, we refer the reader to [8].
For numerical simplicity, we will consider in what follows
that the DCMD process contains one cell only, where N = 1.

B. Problem Statement
The aim of the present paper is to develop an observer for

state estimation in a DCMD system. The proposed strategy
consists in identifying a nonlinear mapping and a pseudo-
inverse form of the mapping that transforms the nonlinear
DAE system into a linear ODE system for which there exists
an observer. In what follows, we will rely on unsupervised
learning techniques to identify the desired mappings. Giving
the discrete nature of deep learning algorithms, the DCMD
system (4) is discretized using Euler backward discretization:

Exk+1 = F (xk, uk)

yk =

 Tfout

Tpout

G(xk)

 (5)

Fig. 2. Schematic of a learning-based state estimation methodology for
DCMD system

where state is given by:
x = [Qf1 , Tbf , Qf2 , Qp1

, Tbp, Qp2
, Tfout, Tpout, Tmf , Tmp]

T ∈
R10, F is a nonlinear vector field resulting from the
discretization. k ∈ {1 . . .K} is the step time, and K
represents the number of samples.

The goal of the rest of the paper is to estimate the next
state xk+1 with the knowledge of state xk and recent output
yk.

III. LEARNING-BASED OBSERVER DESIGN AND DEEP
LEARNING IMPLEMENTATION

A. Overview of methodology

The overview of the whole process of fully learning-based
state estimation methodology is presented in Fig. 2. The
proposed scheme contains the following functional block:
(i) data collection, (ii) offline training and (iii) online state
estimation.

In the data collection section, the raw data is generated
for a given control input. After normalization, the data is
delivered to the offline training section to feed the neural
networks of the encoder and decoder with initialized observer
dynamics. The outputs of the offline training block are corre-
sponding transformation trained by encoder, pseudo-inverse
transformation trained by decoder and partial optimized
observer dynamics. With the deployment of outputs obtained
from offline training, online state estimation is conducted at
the lower block.

B. Deep-Learning-Based Observer Design

With the preliminaries that the nonlinear system com-
plexity in the original coordinates x can be simplified and
analyzed as simply as the linear one in latent space (z
coordinates) [15] [17], we introduce a nonlinear mapping:

ϕ : Rd → Rd′
(6)

where d′ > d, which means the nonlinear mapping ϕ maps
the original d-dimensional dataset to a higher d′-dimensional
feature space. Here we set the dimension of latent state dz =
15, where dz > dx = 10.
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Then a generalized learning-based observer using the
corresponding mappings is designed in the z-coordinates as
follows

zk = ϕ (xk)

zk+1 = Azk +Byk

x̂k+1 = ϕ−1 (zk+1) .

(7)

where xk ∈ X is the state, zk ∈ Z is the state repre-
sentation in the latent space, yk is the output, step time
k ∈ {1, . . . ,K}, ϕ−1 the pseudo inverse of ϕ is also a
nonlinear mapping, (A,B) are controllable pair with A is
Hurwitz.

Inspired by [15], we take the recommended fixed matrix

A = diag([1− 0.5Ts, 1− 1Ts, 1− 1.5Ts, . . . ,

1− 0.5Ts, 1− 1Ts, 1− 1.5Ts])
(8)

where discretization sampling time Ts = 0.01 to balance the
convergence speed and estimation error. Since zk = ϕ(xk)
is not part of the data set D, it cannot be scaled which
can have a serious impact on the neural network training. It
has been proven in [15] that scaling zk can be achieved by
scaling dynamically the matrix B during exploration phase,
by taking

B̃ = diag ([b1, b2, . . .])B. (9)

where b1, b2, · · · ∈ R. Here we use the inverse of the
standard deviation of latent state z to scale matrix B of the
observer. This step can guarantee a relative larger exploration
in latent space when training encoder with unsupervised
learning. Here we make the exploration phase training en-
coder and decoder, epochex and epoch

′ex last 50 epochs.
The above learning-based observer is designed to achieve

state estimation without complicated gain parameters and
other feedback terms. It just needs two collaborative non-
linear mappings ϕ and ϕ−1 instead.

C. Auto-Encoder-Decoder

Different from previous works [14] [15], we slack the
restrictions on candidate selection of nonlinear mapping
ϕ and propose a generalized data-driven observer design.
With the power of deep learning techniques, we build an
auto-encoder-decoder model and train neural networks to
fit the suitable candidates of ϕ and ϕ−1 which can allow
the proposed observer to work in latent space according to
equation (7). The whole process of the auto-encoder-decoder
scheme is described as in Fig. 3.

The neural networks of the encoder and decoder are
constructed using Classic Multi-Layer Perceptrons with two
hidden layers. Each layer has a width of 3000 neurons
followed by a hyperbolic tangent activation function tanh.
The two neural networks are visualized by Netron [18] as in
Fig. 4.

D. Data

1) Raw Data Generation: The large training dataset D =
{xk, xk+1, yk} and validation data set D′ = {xk, xk+1, yk}
include the state x in step time k, state in step time k+1 and
output y in step time k. Assuming the states are available

Fig. 3. Auto-encoder-decoder model structure: state xk is mapped into
latent state zk by encoder, latent state zk+1 is obtained by enforcing
observer dynamics according to zk+1 = Azk + Byk and state estimation
x̂k+1 is recovered by decoder.

(a) Neural networks of encoder (b) Neural networks of de-
coder

Fig. 4. Both neural networks of encoder and decoder are constructed by
Classic Multi-layer Perceptrons (Dense Neural Networks) with two hidden
layers whose width includes 3000 neurons.

in data collection, the training and validation data set can
be obtained offline. In this work, the data sets are generated
synthetically from the model in equation (5), where similar to
the previous work in [19], a sequence of states x and outputs
y is generated for fixed inputs u = [Tfin , Tpin

]
T . Hence, the

training data set D and validation data set D′can be enlarged
easily to the size of 3 × 105 and 5 × 104 respectively, by
feeding the system with various constant values of the input
u.

2) Data Normalization: The state x of the DCMD system
contains two classes of attributes: temperature and heat trans-
fer rate. The temperate class has low values (less than 100
oC). However, the heat transfer class takes extremely high
values (between 103 and 104). The huge value difference
causes important issues: the gradient of loss function during
training will be hard to compute or even be lost.

And we find that the standard data normalization methods
are not working anymore for the DCMD system because
the sampled data is not subject to any kind of regular
distributions, in addition to the huge value difference in x.
In this case, the log function is leveraged to scale raw data,
decreasing the difference between state variable values for
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data normalization:

x∗ = log10(x)/ log10(xmax)

y∗ = log10(y)/ log10(ymax)
(10)

where x∗, y∗, xmax, ymax represent the normalized state,
normalized output, state maximum, output maximum, re-
spectively.

This step is extremely essential for learning-based state
estimation implementation for DCMD systems, because the
smoother gradient calculated by normalized data accelerates
the training speed and increases the estimation accuracy.

Algorithm 1: Training Auto-Encoder-Decoder
Data: training dataset D = {xk, xk+1, yk}
and validation dataset D

′
.

Result: Encoder ϕ and decoder ϕ−1 in best
validation loss, partially optimized
controllable pair (A,B∗)

1 Set the matrix A and B of the learning observer in
(7);

2 Initialize the parameters Θ of encoder and decoder
randomly;

3 Data Normalization: D ← D∗, D′ ← D′∗;
4 for epoch← 1 to epochmax do
5 if epoch < epochex then
6 Compute zk for each xk ∈ D;
7 for i← 1 to dz do
8 Set bi to the inverse of the standard

deviation of {zi,k}
9 end

10 B ← diag ([b1, b2, . . .])B
11 end
12 Compute Lenc following (11) with training data

D;
13 Update Θ of encoder by using Adam optimizer to

minimize Lenc;
14 Compute validation encoder loss L′

enc with
validation data D′;

15 end
16 Pick up the best encoder ϕ, which can obtain the

minimum of validation encoder loss L′
enc∗;

17 for epoch′ ← 1 to epoch′max do
18 Compute Ldec following (12) with training data

D;
19 Update Θ of decoder by using Adam optimizer to

minimize Ldec;
20 Compute validation decoder loss L′

dec with
validation data D′;

21 end
22 Pick up the best decoder ϕ−1 which can obtain the

minimum of validation decoder loss L′
dec∗;

E. Training

• The encoder to identify ϕ is trained by optimizing the
following L2 loss function:

Lenc = ∥ϕ (xk+1)− (Aϕ (xk) +Byk)∥ (11)

where the norm ∥ · ∥ is the mean-squared error.
• Having the trained encoder with the minimum of en-

coder validation loss Lenc
′∗, we train the decoder to find

desired ϕ−1 via optimizing the following loss function:

Ldec =
∥∥xk − ϕ−1 (ϕ (xk))

∥∥ (12)

The whole training process is conducted according to
Algorithm 1.

Deep learning details are as the standard training imple-
mentations: framework is based on PyTorch [20], batch size
is set to 100, Adam optimizer with learning rate initialized
to 0.001 is used, learning rate decays every 50 epochs
by a factor of 4. The model is trained on a workstation
equipped with a AMD Ryzen 9 5950X CPU and a NVIDIA
GeForce RTX 3080Ti GPU. The training lasts for 160 epochs
monitored by Weights and Biases [21] and requires around
2 hours to converge.

IV. NUMERICAL SIMULATIONS

The characteristics of the membrane used in the simula-
tions are presented in Table II.

TABLE II
MEMBRANE PROPERTIES

Property Value
Membrane’s length 0.50 m
Membrane’s width 0.05 mm

Membrane’s thickness 150 µm
Pore size 0.26 µm
Porosity 77%

Tortuosity 1.35 µm
Thermal conductivity 0.2 W /(m K)

Mass transfer coefficient 5.14×10−7 kg/(m2·s·Pa)

We select the model with optimal validation loss as the
best model to evaluate the observer’s performance.

A. Observer Evaluation

The evaluation duration lasts 5000 time step and each
time step is 0.01 seconds. We arbitrarily exploit the con-
stant control input u = [Tfin , Tpin

]T , where the range of
temperatures in feed side Tfin is from 63◦C to 67◦C and
permeate side temperature Tfout

is from 18◦C to 22◦C, to
enforce the system’s dynamics and the DCMD system will
converge to the equilibrium point in short time (about 1.5s).
The initial conditions of state estimation can be selected
arbitrarily, we set all initial conditions of heat transfer rate
to 0 and temperatures to arbitrary integers. We monitor the
estimation convergence of observer along time and record
state estimation value at final time when t = 50s to calculate
convergence accuracy.
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(a) Bulk feed stream temperature (b) Bulk permeate stream temperature

(c) Feed outlet temperature (d) Permeate outlet temperature

(e) Membrane feed temperature (f) Membrane permeate temperature

Fig. 5. Temperatures estimation with the proposed Deep-Learning-Based
Observer and their real values

B. Observer’s Performance Analysis

The convergence of temperature estimations and heat
transfer rate estimations are recorded in Fig 5, Fig 6.

As shown in Fig 5 and Fig 6, all state estimations (except
permeate outlet temperature estimation) rise or drop rapidly
to go beyond the real value temporarily and then start
converging to the real value in finite time. After about 15s,
all states estimates converge to the real values with minor
steady state error, and we consider that the state estimation
for DCMD system is completed.

To take a step further to prove the accuracy of the learning
observer implemented in this paper, the relative estimation

error δ =

∣∣∣∣x− x̂

x

∣∣∣∣ is monitored during whole evaluation

process. Results are displayed in Fig 7.
The figure shows that there exists a phase usually called

”oscillation phase” where big peaks appear resulting in high
estimation errors. One can notice that the biggest peaks are
associated with heat transfer rates. This can be explained by
the fact that this type of attributes (heat transfer rate) takes

(a) Feed inlet heat transfer rate (b) Feed outlet heat transfer rate

(c) Permeate outlet heat transfer rate (d) Permeate inlet heat transfer rate

Fig. 6. Real heat transfer rates values and their estimation with the proposed
Deep-Learning-Based Observer

values of the order of 103, and starting the learning observer
with a zero initial condition is effort-costing for the proposed
observer to reach these high values in short time. After the
mentioned phase (approximately 5s), all relative estimation
error curves start decreasing rapidly to zero. The convergence
is achieved after 15s.

Table III shows the real states values, their estimations
using the learning observer, and the relative estimation error
recorded at 50s. The temperature and heat transfer rate
estimations converge to the real value with small steady
errors. In fact these errors are acceptable, as all the relative
estimation errors are less than 1% .

TABLE III
TEMPERATURE AND HEAT TRANSFER RATE ESTIMATION AT 50S

state real value estimation relative error
Tbf 64.14 64.60 0.7%
Tbp 22.03 22.09 0.3%

Tfout 62.29 62.64 0.6%
Tpout 25.08 25.12 0.2%
Tmf 59.85 60.17 0.5%
Tmp 26.48 26.63 0.6%
Qfin 5269 5307 0.7%
Qfout 4467 4486 0.4%
Qpint 4343 4371 0.7%
Qpout 5145 5191 0.9%

From the simulation results, we can conclude that the
generalized learning-based observer is working for DCMD
systems represented by a DAE structure to estimate the states
under constant inputs, if the encoder and decoder are well-
trained to identify a suitable collaborative pair of nonlinear
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Fig. 7. Relative estimation error monitored during the whole process of
proposed learning-based observer evaluation

mappings ϕ and ϕ−1, which can make the observer working
in latent space.

V. CONCLUSIONS

In this paper, a generalized learning-based observer is
designed to estimate the states of the DCMD system via two
collaborative nonlinear mappings that transform the original
system modeled by a DAE into a latent space, where it can
be represented by linear ODEs. A data-driven auto-encoder-
decoder model is constructed to identify the two nonlinear
mappings. Numerical simulations show that the proposed
learning observer can estimate the states of the DCMD
process with negligible steady-state relative estimation errors.
The future work will focus on extending the proposed
learning-based observer for DAE systems with time-varying
control input, as well as a hardware implementation in order
to experimentally validate the proposed observer. Addition-
ally, optimizing the matrix A to avoid possible poor dynamic
state capture is an open topic that would be interesting to
tackle.
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[11] G Besançon, H Hammouri, and S Benamor. State equivalence of
discrete-time nonlinear control systems to state affine form up to
input/output injection. Systems & control letters, 33(1):1–10, 1998.

[12] Pauline Bernard and Vincent Andrieu. Luenberger observers for
nonautonomous nonlinear systems. IEEE Transactions on Automatic
Control, 64(1):270–281, 2018.

[13] Nikolaos Kazantzis and Costas Kravaris. Discrete-time nonlinear
observer design using functional equations. Systems & Control Letters,
42(2):81–94, 2001.

[14] Louise da C Ramos, Florent Di Meglio, Valéry Morgenthaler, Luı́s
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