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Abstract—Lane change in dense traffic typically requires
the recognition of an appropriate opportunity for maneuvers,
which remains a challenging problem in self-driving. In this
work, we propose a chance-aware lane-change strategy with
high-level model predictive control (MPC) through curriculum
reinforcement learning (CRL). In our proposed framework, full-
state references and regulatory factors concerning the relative
importance of each cost term in the embodied MPC are generated
by a neural policy. Furthermore, effective curricula are designed
and integrated into an episodic reinforcement learning (RL)
framework with policy transfer and enhancement, to improve the
convergence speed and ensure a high-quality policy. The proposed
framework is deployed and evaluated in numerical simulations of
dense and dynamic traffic. It is noteworthy that, given a narrow
chance, the proposed approach generates high-quality lane-
change maneuvers such that the vehicle merges into the traffic
flow with a high success rate of 96%. Finally, our framework
is validated in the high-fidelity simulator under dense traffic,
demonstrating satisfactory practicality and generalizability.

I. INTRODUCTION

Chance-aware lane change is geared towards maneuvering
the ego vehicle to track and occupy the recognized narrow
and moving chance with an appropriate safe margin, such that
the ego vehicle merges into the traffic flow. However, it is
still an open and challenging problem on how to generate
a satisfactory trajectory and feasible lane-change maneuvers.
First, explicit prediction in terms of motions and states of
traffic flow is demanded to infer the exact pose for the
execution of lane change. Also, the time window needs to
be identified dynamically for lane-change maneuvers during
the planning horizon. Moreover, the inevitable existence of
traffic uncertainties poses potential threats to ensure driving
safety. To address these challenges, it is imperative to develop
a motion planner for chance-aware lane change with strong
adaptiveness towards such dense and dynamic traffic.

As one of the widely used optimization-based approaches,
model predictive control (MPC) has gained wide popularity
for its effectiveness in optimizing the trajectory while dealing
with various constraints for self-driving [1]–[3]. However, in
complex scenarios such as the aforementioned chance-aware
lane-change problem, it is nearly impossible to properly set all
the handcrafted factors of MPC, e.g., time-varying constraints
corresponding to the dynamic identification of time windows
for lane-change maneuvers. In this sense, the solution quality
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Figure 1. Overview of our proposed framework for chance-aware lane-
change problems. The recognized dynamic chance for lane change is visually
represented through the use of a red dashed rectangle.

could be significantly degraded. On the other hand, reinforce-
ment learning (RL) has shown promising results in generating
effective and agile maneuvers for self-driving by learning a
driving strategy through trial-and-error [4]–[7]. However, it is
a common problem that pure RL-based methods suffer from
instability and limited safety guarantees of control policies.

Learning-based MPC stands as a promising hybrid paradigm
for devising control strategies, wherein critical elements of
MPC can be acquired through classical machine learning
models or deep neural networks. A typical routine for param-
eterizing the MPC with crucial factors relies on learning the
system model. In [8], [9], the Gaussian processes are employed
to enhance the system model to improve the solution quality
of MPC and alleviate the computational burden. Moreover,
the formulation of constraints within the MPC scheme can
benefit from deep learning techniques. In [10], [11], recurrent
neural networks (RNNs) and generative adversarial networks
(GANs) are integrated into an MPC framework for generating
lane-change maneuvers in dense traffic. RNNs and GANs are
trained to predict the future motions and poses of interactive
vehicles, contributing to the establishment of safety constraints
within the MPC scheme.

Furthermore, the integration of MPC and RL has been
explored for motion planning tasks due to its outstanding
flexibility and adaptiveness to challenging problems. As one
of the seminal works in this area, a Gaussian distribution is
harnessed to model the high-level policy in [12], [13], with
which the traversal time is defined as a sequence of decision
variables, such that the MPC can be parameterized. Hence, the
quadrotor accomplishes the task of flying through a swinging
gate. However, the state references of MPC are fixed as the
gate states, which could degrade the performance of agile
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flight. Additionally, in [14], SE(3) decision variables modeled
by deep neural networks, are further designed as the references
of MPC. Essentially, this approach manifests the effectiveness
in traversing a moving and rotating gate. Nevertheless, the
weight modulation under the MPC scheme is empirical, which
hinders the generalization of the method to dense and dynamic
environments with higher complexity.

In this paper, a novel learning-based MPC framework for
chance-aware lane-change tasks is proposed, where the aug-
mented decision variables are designed to parameterize the
MPC. Specifically, we make use of a neural policy to learn full
states as references of MPC and also their regulatory factors
which can automatically determine the relative importance of
references within the planning horizon. To deal with the reward
sparsity issue and further improve the training efficiency, we
incorporate curriculum reinforcement learning (CRL) with
policy transfer and enhancement to learn the optimal policy
progressively with ordered curricula. The contributions of this
paper are listed as follows:

(1) We propose a novel learning-based MPC framework that
incorporates full-state references and regulatory factors which
can modulate the relative importance of each cost term within
the cost functions. This facilitates the effective extraction
and adjustment of all crucial information for optimizing the
solution quality of MPC, leading to improved adaptiveness to
dense and dynamic traffic.

(2) To improve the policy quality and avoid unstable learn-
ing, we present CRL with policy transfer and enhancement to
learn a neural policy, which achieves faster convergence and
higher reward compared to other baselines.

(3) The proposed approach is validated through numerical
simulations under dense and dynamic traffic, where improved
safety and effectiveness are demonstrated through comparative
experiments. Furthermore, the practicality and generalizability
are illustrated through experimental validations in the high-
fidelity simulator.

II. PROBLEM STATEMENT

A. Vehicle Dynamic Model

The bicycle model in [15] is used in this work, where
the state vector of the vehicle is defined as x =[
px py φ vx vy ω

]⊤
, where px and py denote the

X-coordinate and Y-coordinate position of the vehicle’s center
of mass, φ is the heading angle, vx and vy are the longitudinal
speed and lateral speed, and ω represents the yaw angular
velocity. Also, we integrate the actions into a vector as
u =

[
a δ

]⊤
, where a and δ are the acceleration and

steering angle. Subsequently, the nonlinear dynamic model
fdyn of the vehicle in discrete time is given by:

xt+1 = xt + fdyn(xt,ut)dt

=



px,t + (vx,t cosφt − vy,t sinφt)dt
py,t + (vx,t sinφt + vy,t cosφt)dt

φt + ωtdt
vx,t + atdt

Lkωtdt−kf δtvx,tdt−mv2
x,tωtdt

mvx,t−(kf+kr)dt
Izvx,tωt+Lkvy,tdt−lfkfδtvx,tdt

Izvx,t−(l2fkf+l2rkr)dt


,

(1)

where t represents the current time, dt denotes the step time,
m is the mass of the vehicle, lf and lr are the distance from
the center of mass to the front and rear axle, kf and kr are
the cornering stiffness of the front and rear wheels, Lk =
lfkf − lrkr, and Iz is the polar moment of inertia.

B. Chance-Aware Lane-Change Task

In this work, the focus lies on the spatial-temporal charac-
teristics of the entirety of traffic flow, as opposed to individual
surrounding vehicles. Consequently, the driving behaviors of
each vehicle within the traffic flow are unrestricted, encom-
passing motions such as accelerating, braking, and steering.
Notably, to preserve the underlying topology of the modeled
traffic flow, lane-change behaviors of vehicles within the traffic
flow are prohibited. To facilitate the modeling of traffic flow,
we assume that the traffic flow maintains consistent speed
with inherent uncertainties. Additionally, the ego vehicle is
obstructed by a dead-end, where the front vehicles drive
slowly. The dynamic chance for the ego vehicle to perform
lane change is recognized as the gap of the traffic flow on the
middle lane. The illustration of the traffic is depicted in Fig. 1.

In this context, the objective of the chance-aware lane-
change mission is to plan the optimal state trajectory x∗

k,∀k ∈
[0, 1, · · · , N ] towards the goal states xg and obtain a sequence
of optimal control commands u∗

k,∀k ∈ [0, 1, · · · , N−1] over a
receding horizon N , such that the ego vehicle merges into the
traffic flow successfully on the target lane. Concurrently, the
lane change necessitates the adoption of appropriate maneu-
vers by the ego vehicle within a specified temporal window,
which occurs precisely before any potential collision with the
front vehicles.

III. HIGH-LEVEL MODEL PREDICTIVE CONTROL WITH
AUGMENTED DECISION VARIABLES

A. MPC Formulation

To solve the chance-aware lane-change problem, we formu-
late a nonlinear MPC with augmented decision variables over
the receding horizon N at time step t:

min
x0:N ,u0:N−1

JxN
+

N−1∑
k=0

(Jxk
+ Juk

+ J∆uk
+ Jtra,k)

= δTx,NQxδx,N +

N−1∑
k=0

(δTx,kQxδx,k + δTu,kQuδu,k

+∆T
u,kQ∆u∆u,k + δTtra,kQtra (ttra, k) δtra,k)

s.t. xk+1 = xk + fdyn (xk,uk) dt,

x0 = xinit ,u−1 = uinit ,

py,min ≤ py ≤ py,max,

amin ≤ a ≤ amax,

− δmax ≤ δ ≤ δmax,
(2)

where δx,k = (xk − xg) denotes the difference between the
current states xk and the goal states xg , δtra,k = (xk − xtra)
represents the difference between the current states xk and the
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learnable full-state references xtra, δu,k = uk is a regulariza-
tion term for control commands uk, ∆u,k = (uk − uk−1) is
another regularization term considering the variation of control
commands for driving comfort. The quadratic cost terms in
(2) are weighted by diagonal matrices Qx, Qtra (ttra, k), Qu,
and Q∆u

. The initial states and initial control commands are
represented by xinit and uinit, respectively. The Y-coordinate
position is bounded within py,min and py,max introduced by the
road width. Additionally, control commands are constrained by
amin, amax, −δmax, and δmax considering the physical limits
of vehicle dynamics.

B. MPC Parameterization with Augmented Decision Variables

We introduce the learnable full-state references xtra as the
desired pose and speed of a lane change manuver:

xtra = [px,tra, py,tra, φtra, vx,tra, vy,tra, ωtra]
⊤
, (3)

where xtra are intermediate states for temporary tracking of
MPC. To endow the vehicle with the ability to automatically
balance the importance between tracking xtra and tracking xg ,
the weighting matrix Qtra (ttra, k) with adaptive adjustment
is defined as:

Qtra (ttra, k) = Qmax exp
(
−γ (kdt − ttra)

2
)
, (4)

where Qmax is a learnable maximum of Qtra, γ ∈ R+

is the exponential decay rate for costs in terms of tracking
xtra, and ttra is a learnable tracking time reference, which
determines the opportune timing for a lane change. In order to
further modulate the relative importance of each state reference
respectively, Qmax is defined as:

Qmax = diag(Qpx,tra
, Qpy,tra

, Qφtra
, Qvx,tra

,

Qvy,tra
, Qωtra

).
(5)

Specifically, Qpx,tra and Qpy,tra in Qmax are assigned rel-
atively large values whereas xtra and ttra tend to confine
themselves to small values. The considerable discrepancy
in magnitude could potentially hinder the training process.
Therefore, Qmax adopts the proportion form of Qx, i.e.,
Q̃max ← Qmax ⊙ Qx, where ⊙ is the Hadamard product
for element-wise multiplication.

Therefore, the regulatory factors Qmax and ttra modulate
the cost functions of MPC collaboratively, which balance the
importance between tracking xtra and tracking xg . Therefore,
the lane change behavior is divided into two distinct phases.
During the initial phase, the ego vehicle prepares for the
maneuvers of the lane-change behavior by tracking xtra;
subsequently, in the latter phase, the ego vehicle concentrates
on tracking xg to effectively merge into the traffic flow.

We integrate all decision variables to an augmented decision
vector z as:

z = [px,tra, py,tra, φtra, vx,tra, vy,tra, ωtra, Qpx,tra
,

Qpy,tra
, Qφtra

, Qvx,tra
, Qvy,tra

, Qωtra
, ttra]

⊤ ∈ R13.
(6)

In this sense, the MPC is parameterized by decision vector
z. By feeding MPC with different z, different corresponding
optimal state trajectories are generated, denoted as ξ∗(z) =
fMPC(z) (i.e., ξ∗(z) = {x∗

k(z)}
N
k=0). fMPC is defined as the

mapping function of MPC. Hence, we can incorporate the
episodic RL technique for policy search [12]–[14] to determine
the optimal policy π∗ that automatically tune the augmented
decision variables.

IV. CURRICULUM REINFORCEMENT LEARNING WITH
POLICY TRANSFER AND ENHANCEMENT

A. Observation and Policy Representation

The observation vector of the ego vehicle is defined as
follows:

o = [px,init, py,init, φinit, vx,init, p
c
x,init, p

c
y,init, v

c
x,init,

pfx,init, p
f
y,init, v

f
x,init]

⊤ ∈ R10,
(7)

where px,init, py,init, vx,init, pcx,init, pcy,init, vcx,init, pfx,init,
pfy,init, and vfx,init represent the initial X-coordinate and Y-
coordinate position as well as the longitudinal speed of the
ego vehicle, dynamic chance and the nearest front vehicle,
respectively. φinit is the initial heading angle of the ego
vehicle.

We further exploit a deep neural network to parameterize
the policy π, with which the augmented decision vector z is
modeled as:

z = π (o) = fθ (o) , (8)

where θ are the parameters of the deep neural network, o is the
observation vector of the vehicle. Moreover, we apply z-score
normalization to input features in o. In this work, we present
a novel CRL framework to determine the optimal policy π∗.

B. Multi-Task Reward Formulation

Sparse Lane-Change Reward: The sparse reward function,
which evaluates the quality of the optimal state trajectory
ξ∗ (z) for the lane-change task, is designed as:

RLC (ξ∗ (z)) = Rmax − cc

N∑
k=0

ρc |vk|2 , (9)

where ρc is a binary flag indicating whether a collision with
surrounding vehicles occurs, cc ∈ R+ is a hyperparameter for
weighting the collision penalty, and Rmax ∈ R+ is the goal
reward, which is gained when the ego vehicle merges into the
traffic flow successfully.

Reward Shaping: The sparsity of the lane-change reward
poses challenges to learning a viable policy within a reason-
able time frame. Therefore, we introduce a novel reward term
to directly evaluate the decision variables, which guides the
RL agent to explore the policy space in directions of larger
policy gradients:

RDV (z) =

− cx |∆px| − cyρy∆py − ct |t| − c∆tρ∆t∆t− c∆φρ∆φ∆φ

− cpxρpx

∣∣Qpx,tra

∣∣− cpyρpy

∣∣Qpy,tra

∣∣− cφρφ |Qφtra |
− cvxρvx

∣∣Qvx,tra

∣∣− cvyρvy

∣∣Qvy,tra

∣∣− cωρω |Qωtra
| ,

(10)
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Algorithm 1: Curriculum Reinforcement Learning
with Policy Transfer and Enhancement

Input: fMPC, C
Output: π∗ = fθ∗

1 Initialize θ;
2 while not terminated do
3 Select Curriculum Ci from Curricula C ;
4 Reset the environment to get o and xg according

to Ci;
5 if curriculum switched then
6 Load policy π∗ trained with Ci−1;
7 end
8 Compute z = fθ(o);
9 Solve MPC(z) as (2) online to obtain ξ∗ (z) ;

10 for j ← 1 to dim(z) do
11 Perturb j-th row in z;
12 Estimate gj using (13);
13 end
14 Update θ using gradient ascent with gs1 and gs2;
15 end

where

∆px = px,tra − pcx,init,

∆py = min(|py,tra − py,max| , |py,tra − py,min|),
∆t = min(|ttra − tmax| , |ttra − tmin|),
∆φ = min(|φtra − φmax| , |φtra − φmin|).

In Eq. (10), t denotes the current time within the simulation
episode, cx, cy , ct, c∆t, c∆φ, cpx

, cpy
, cφ, cvx , cvy , and cω are

weighting coefficients, ρy , ρ∆t, and ρ∆φ are binary flags indi-
cating whether the learnable position reference of Y-coordinate
is within the range of values [py,min, py,max], whether the
reference of the learnable time exceeds the simulation duration
or falls below zero, and whether the learnable heading angle
exceeds the range of the feasible heading angle, respectively.
ρpx , ρpy , ρφ, ρvx , ρvy , ρω are also binary flags implying
whether the learnable maximum of weighting is smaller than
zero. tmin and tmax represent the lower bound and upper bound
of the duration of simulation. φmin and φmax are the lower and
upper bound of the predefined feasible heading angle range.

C. Curriculum Reinforcement Learning with Policy Transfer
and Enhancement

We operate the neural policy at the beginning of each
episode to model z, with which the MPC can generate a
sequence of optimal trajectories ξ∗(z). Therefore, the cor-
responding reward signal R(ξ∗(z)) is received to evaluate
the quality of generated trajectories. Hence, inspired by [14],
the problem of finding the optimal neural policy with RL is
reformulated to the following reward maximization problem:

max
θ

R (ξ∗ (z (θ)))

s.t. ξ∗ (z (θ)) = fMPC (z (θ)) .
(11)

The gradient of the episode reward R with respect to neural
network parameters θ is decomposed with chain rule, where

dR

dθ
=

∂R

∂z

∂z

∂θ
. (12)

Specifically, the sub-gradient gs2 = ∂z/∂θ is calculated
automatically by loss backward when updating the neural net-
work. However, obtaining another sub-gradient gs1 = ∂R/∂z
is computationally expensive, as it requires differentiation
through the nonlinear MPC optimization problem over the
whole receding horizon.

We denote the value in the j-th row in gs1 as gj . With the
finite difference policy gradient method, we can estimate gj
as:

gj =
R (ξ∗ (z+ ϵej))−R (ξ∗ (z))

ϵ
, (13)

where ej = [0, · · · , 0, 1, 0, · · · , 0]⊤ is a unit vector with only
1 in j-th row, ϵ is a small random step in the direction ej to
perturb the augmented decision vector z.

We exploit on-policy RL to train the neural network policy
through the maximization of the designed reward. Never-
theless, the reward in such hierarchical framework does not
exhibit a direct correspondence with the neural network output.
That is to say, unfavorable decision variables can still yield
an acceptable reward due to the inherent robustness of MPC.
Furthermore, due to the sparsity of lane-change reward, the
sufficiency of policy exploration is not guaranteed, so it
is challenging to yield an acceptable policy in finite time.
Consequently, the training of neural network suffers from
inefficient and insufficient exploration in the policy space and
even unstable learning.

Curriculum learning (CL) is a well-established routine
to accelerate the exploration when RL is handling rather
complex missions, especially addressing extrapolation error
and premature policy convergence [7]. Therefore, we present
a CRL framework to train our neural policy with policy
transfer and policy enhancement. We generate three modes of
curricula, which are represented by C = {Ci} , i ∈ {1, 2, 3}.
The curricula are designed with different tasks in different
domains.

Curriculum 1: Transferable Policy Learning with Reward
Shaping in Static Environment. In source domain 1 which
is denoted as Ms,1, the traffic flow on the fast lane keeps
static. The objective of Curriculum 1 is to learn a transfer-
able neural policy. We train our randomly initialized neural
network through the maximization of the reward term directly
evaluating the decision variables as (10). In Ms,1, the task
Ts,1 is to train an acceptable neural policy πs,1 in finite time,
with which the learnable state references xtra, maximum of
weighting matrix Qmax, and tracking time reference ttra are
expected to converge to a feasible range roughly. Therefore,
the RL agent is guided by the empirically-designed reward,
increasing the exploration efficiency in the policy space.

Curriculum 2: Lane-Change Policy Learning Under Low-
Speed Setting. In Curriculum 2, we load the transferable policy
πs,1 and train it in source domain Ms,2, where the traffic
flow on the fast lane move at a speed lower than the normal
setting. The objective of Curriculum 2 is to generalize the
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transferable πs,1 to a lane-change policy πs,2 by maximizing
the lane-change reward as (9).

Curriculum 3: Lane-Change Policy Enhancement Under
Normal-Speed Setting. In Curriculum 3, we aim to obtain an
optimal neural policy π∗ for the lane-change task under a
normal speed setting. In the target domainMt, the traffic flow
on the fast lane moves at a normal speed and the weight of the
penalty term in terms of collisions in lane-change reward is
increased. We load and enhance the lane-change policy πs,2,
and obtain the optimal policy π∗ eventually by maximizing
the revised lane-change reward.

To this end, the proposed CRL framework with policy
transfer and enhancement is summarized in Algorithm 1.

V. EXPERIMENTS

A. Numerical Setup

The MPC problem is solved using CasADi [16] with IPOPT.
In MPC, we set the receding horizon and the step time to
T = 5.0 s and dt = 0.1 s. Furthermore, we take the weight-
ing matrices Qx, Qu, and Q∆u

to diag ([100, 100, 100, 10]),
diag ([1, 1]), and diag ([0.1, 0.1]), respectively. Also, we set
the lower and upper bounds of acceleration and steering angle
to amin = −6.0m/s2, amax = 3m/s2, δmin = −0.6 rad, and
δmax = 0.6 rad, respectively.

The deep neural network is constructed in PyTorch [17],
with the structure of 4 hidden layers with 128 LeakyReLU
nodes. The neural network is trained by Adam optimizer [18]
with an initial learning rate 3× 10−4, where the learning rate
decays in 0.96 every 32 steps. Weights and Biases [19] is
utilized to monitor the training process.

We train the policy network and evaluate the driving
performance in numerical simulations, where the ego ve-
hicle is placed at [px,init ∼ N (30, 2.5),−2.5] and the dy-
namic chance moves from

[
pcx,init ∼ N (50, 10), 2.5

]
at a time-

variant speed of vcx ∼ N (µi, σi) m/s. Here, µi and σi are the
mean speed and speed standard deviation of each curriculum
from i ∈ {1, 2, 3}. In our settings, µ1, σ1, µ2, σ2, µ3, σ3 are
0, 0, 2, 0.5, 4, 1, respectively. The goal states xg are set to
[pcx, 2.5, 0, v

c
x, 0, 0], where pcx is the X-coordinate position of

the dynamic chance obtained from traffic in real time.

B. Training Result

Figure 2. Reward curves of different methods. The training curves are
smoothed by exponential moving average with a degree of 0.8, and the
curriculum is switched at episodes 100 and 200.

In order to illustrate the effectiveness of the proposed
method (denoted as MPC-CRL) in policy learning, we employ
the subsequent learning-based baselines for comparison:

• High-level MPC with augmented decision variables and
vanilla RL (denoted as MPC-RL).

• High-level MPC with SE(3) decision variables [14] and
CRL (denoted as MPC-SE3-CRL).

1.0 s

3.8 s

5.9 s

Figure 3. Key frames of a trail with our proposed approach for chance-aware
lane change in numerical simulations. The vehicles on the middle and upper
lane represent the traffic flow, the vehicle in red is the ego vehicle, the vehicles
ahead of the ego vehicle on the lower lane are front vehicles, the dotted line
in red and blue represent the future trajectory and the executed trajectory
of the ego vehicle. The colorbars refer to the different longitudinal speed of
predicted and executed trajectories of the ego vehicle.

The reward curves are presented in Fig. 2. The results
exhibit that our proposed MPC-CRL surpasses MPC-RL both
in terms of convergence speed and reward performance. Ad-
ditionally, the incorporation of augmented decision variables,
which adaptively modulate the costs of MPC, endows MPC-
CRL with superior reward performance when compared to
MPC-SE3-CRL. Therefore, the training results clearly indicate
that the presented CRL framework effectively encourages the
RL agent to efficiently and sufficiently explore the policy
space, ultimately leading to the attainment of the satisfactory
optimum. Additionally, the introduction of augmented decision
variables notably improves the lane-change performance.

C. Performance Evaluation

To provide further insight into the driving performance
attained by our framework, a set of trails with various settings
are conducted for driving performance evaluation, where a
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Figure 4. The speed and action profiles of a trail of chance-aware lane change.

series of snapshots from a trail are presented in Fig. 3, and
the corresponding speed and action profiles are illustrated in
Fig. 4. As shown in Fig. 3(a), when t = 1.0 s, the ego vehicle
plans a long trajectory along the lower lane, intending to
track the learnable state references xtra. Simultaneously, the
ego vehicle accelerates and exploits the maximum bounded
acceleration, as indicated in Fig. 4. Then, Fig. 3(b) visualizes
the ego vehicle’s subsequent actions, wherein it decelerates
and executes a left turn, preparing of a transition to the
middle lane with enough safe margin at t = 3.8 s. The
recorded longitudinal speed at this moment is approximately
6.1m/s. Ultimately, as depicted in Fig. 3(c), the ego vehicle
successfully occupies the recognized dynamic chance and
safely merges into the traffic flow on the middle lane at
t = 5.9 s.

D. Comparison Analysis

Due to the failure of acquiring essential domain knowledge
during training, MPC-RL does not qualify as a suitable base-
line for the comparison of driving performance. We further
exploit a new baseline, which adopts the paradigm of high-
level MPC with augmented decision variables curated through
human-expert experience (denoted as MPC-HE). Moreover, to
quantitively analyze the results attained by different methods,
we define a collision-free episode finished within finite time as
a successful case. Otherwise, we record an episode involving
any collision as a collided case and an episode terminated by
the episode duration of simulation as a time-out case. After-
wards, we run the trails repeatedly 100 times and record the
corresponding success, collision and time-out rate of various
methods, as documented in Table I. The results indicate that
our proposed approach outperforms all baselines in terms of
both task accomplishment and safety assurance due to the
highest success rate of 96% and the lowest collision rate of 4%.
By leveraging augmented decision variables to automatically
modulate the costs of MPC, the adaptiveness of our approach
to dense and dynamic traffic is improved significantly. Hence,
we conclude that our proposed framework manifests a stronger
guarantee of collision avoidance and task success.

E. Validation in High-Fidelity Simulator

We further validate the effectiveness of our proposed frame-
work in the high-fidelity simulator CARLA [20]. The outer
ring road with three lanes in Town05 is the testbed for
performance validation, where all traffic participants are set

Table I
SUCCESS, COLLISION, AND TIME-OUT RATE OF DIFFERENT METHODS FOR

CHANCE-AWARE LANE-CHANGE TASKS.

Approaches Succ. (%) Coll. (%) Time-out (%)

MPC-CRL 96 4 0
MPC-SE3-CRL 77 23 0

MPC-HE 69 28 3

Figure 5. Key frames of the experimental validation of our method in high-
fidelity simulator. The top shows the third-person view attached to the ego
vehicle. The bottom shows the bird-eye view, where the red rectangle is the
ego vehicle while the green rectangles denote the surrounding vehicles.

to Tesla Model 3. In order to reduce the gap between the
environments in numerical simulations and high-fidelity vali-
dations, the global Cartesian coordinate frame is transformed
to the coordinate frame of centerline reference [3]. We load the
policy model trained in numerical simulations and fine-tune it.
Key frames of a representative example are presented in Fig.
5. The results demonstrate clearly that the RL agent trained
by our approach retains the capability to effectively determine
suitable maneuvers and appropriate timing for a lane change
in CARLA. The validation results highlight the efficacy and
generalizability of our method when deployed to the high-
fidelity simulator.

VI. CONCLUSIONS

In this paper, we proposed a novel learning-based MPC
framework with appropriate parameterization using augmented
decision variables. Instead of choosing partial variables (such
as only the positions) as references, we utilized a neural
policy to learn full-state references and regulatory factors cor-
responding to their relative importance. Hence, the cost terms
were automatically modulated with our specifically-designed
augmented decision variables. Furthermore, ordered multi-
phase curricula were generated for learning a neural policy
using RL, which leads to faster convergence speed and better
policy quality. Furthermore, through a series of comparative
experiments, our approach demonstrated superiority in terms
of success rate in chance-aware lane-change tasks under dense
and dynamic traffic settings. Moreover, the practicality and
generalizability of our method are further illustrated through
the experimental validations in the high-fidelity simulator.
Our future work is to reformulate the RL to a step-based
paradigm and develop a more efficient training pipeline with
analytical gradients. Hardware validation is also part of our
future interests.
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